By Tommy H. Thomason

Friday, January 22, 2016

In Memory of Ensign Raymond Hite, Jr.



 Ensign Raymond Maxwell Hite, Jr was killed on 18 May 1961 in the crash of the first Sageburner attempt to set the record for “speed over a straight three-kilometer course at a restricted altitude” with the McDonnell F4H Phantom II. This involved making four passes, two in each direction, at an altitude above the ground of no more than 100 meters (328 feet). Hite was the Radar Intercept Officer in the rear cockpit.

Most accounts of the accident (including, I regret to report, my own) only mention the pilot, Commander Jack L. Felsman. At some point early on, Hite’s presence began to be overlooked, which is lamentable because he was the epitome of Tom Brokaw’s “Greatest Generation” and arguably critical to the success of the record-breaking attempt because of his ability to use the F4H’s radar to coach the pilot onto the course, not easily seen visually from an altitude of only 100 feet at supersonic speed.

In 1942, when he was only 14 but big and mature for his years, he enlisted in the Army Air Corps. Before his true age was discovered and he was discharged, he had flown combat missions as a gunner in a Martin B-26 and shot down a German fighter. At 17, he joined the Navy, initially serving as a gunner on a patrol bomber.

In 1952, he was selected for training as an enlisted Bombardier/Navigator. This was not unusual at the time but becoming rare. It had been a natural transition of enlisted men from gunners/radiomen to radar operators to bombardiers. However, by the late 1950s, following the introduction of the Douglas A3D Skywarrior, almost all Navy bombardier/navigators were officers.

As reported in one of his commendations, he won the top individual honors by a wide margin in Heavy Attack Wing One’s Sixth Bombing Derby held in December 1958: “The competition tested performance in bombing, celestial and radar navigation, and a thorough understanding of special weapons in addition to normal crew duties and understanding of aircraft systems.”

In part as a result, Hite was selected to be an officer and commissioned as an Ensign in January 1960. His new assignment as a Limited Duty Officer, Aviation Ordnance, was to be part of the A3J-1 Vigilante test program as bombardier/navigator. His new duty station was the U.S. Naval Air Special Weapons Facility at Kirtland Air Force Base, Albuquerque, New Mexico.

In addition to the A3J testing, Hite participated in the evaluation of the Navy’s newest fighter, the Phantom II, that also had a nuclear weapon delivery capability including radar mapping for navigation.

Hite had already survived two horrific Navy carrier-based bomber accidents, bailing out of an AJ Savage that had lost its vertical fin and an A3D Skywarrior after an explosion severed its aft fuselage. Unfortunately, he and Felsman had no chance to escape this one. Although the crash is usually attributed to the failure of the pitch-damper system, the F4H was susceptible to Pilot-Induced Oscillation (PIO) in pitch at transonic speed and low altitude. This particular PIO occurs when the airplane’s dynamic response to an externally generated (e.g. turbulence) pitch change matches that of the pilot’s response to it. If both airplane and pilot then react, again simultaneously, to the larger than expected pitch change, hell’s-own roller-coaster ride results. If the pilot doesn’t take himself out of the loop, i.e. let go of or not move the stick, the result could be an overload of the airplane’s structure.

When I joined McDonnell in 1966 as a flight test engineer fresh out of college, I was shown the then closely held movie clip of the inflight breakup of the first Sageburner. The pitch excursions didn’t seem particularly large but within a few seconds and about three cycles, ended with the airplane disintegrating at 14 gs, well above its design structural limit, and the engines flying out of the debris headed down course. It is now a video on YouTube.

Raymond Hite left a pregnant wife and three daughters bereft that day. He deserves to be remembered for the moment that ended his almost 20 years of service to his country.

Tuesday, January 5, 2016

Grumman S2F/S-2 Tracker Monograph


Finally (it's been a work-in-progress for a long time). It's currently being printed and should be on Steve Ginter's website (http://www.ginterbooks.com/NAVAL/NAVAL.htm) shortly. My coauthor, Bob Kowalski, was one of the earliest Navy S2F pilots; I got to sit in one with my mother about that same time.

  And in 1993, I got to fly one, courtesy of what is now Cascade Aerospace.

I can assure you that there's stuff in this monograph that you haven't seen before.
In summary:
The Grumman S2F (S-2) was developed to meet a specific mission requirement, carrier-based antisubmarine warfare. It proved to be so useful and adaptable that it is still in military and civil service more than 60 years after it first flew in December 1952. Richly illustrated and personalized by Tracker pilots and crewmen anecdotes, Grumman S2F/S-2 Tracker describes its evolution from initial requirement to eventual replacement including unsuccessful Grumman proposals for improved versions. Its service in foreign militaries and adaptation to wildfire control are also summarized along with descriptions of the Carrier On-board Delivery (COD) and Airborne Early Warning (AEW) variants.

Friday, January 1, 2016

A-6 "Iron Hand" Conversions

Operation Iron Hand was a belated endeavor to deal proactively with Surface to Air Missile (SAM) sites during the Vietnam War. Although construction of the sites was no secret, attacking them was not allowed by the Department of Defense until Navy and Air Force airplanes started being shot down. The first USAF mission in late July 1965 was a total failure, with six of the 46 F-105s being shot down by conventional antiaircraft gun batteries in what turned out to be a strike on a well-protected but SAM-less site.

There were basically three ways to deal with SAMs: evade them; electronically jam or mislead the tracking radar and guidance signals; and destroy the sites. Evading them was iffy and required a visual sighting soon enough to do so. Jamming or misleading the tracking and guidance was only somewhat effective. Destroying the sites with conventional attacks was problematic because they were heavily defended with an array of radar-directed and barrage-type antiaircraft guns.

Another method of destroying the SAM capability was the use of an Anti-Radiation Missile (ARM), which was fired well outside of the SAM site's conventional AAA defenses, homed in on its tracking radar, and destroyed it. The Navy had already developed an ARM using its Sparrow missile combined with a radar-homing seeker. This was designated the AGM-45 Shrike and was usually fired from the Douglas A-4 Skyhawk.

These Navy missions received the nickname Iron Hand after the original operation. (The corresponding USAF aircraft were known as Wild Weasels.)

The only problem was, the Shrike's range was significantly less than that of the Russian SA-2 SAM, making an Iron Hand attack too much of a fair fight. The next ARM was therefore a modification of a big Navy ship-launched Surface-to-Air Missile, which resulted in the AGM-78 Standard ARM. Since it weighed almost 1,400 lbs, it had to be carried by the Grumman A-6 Intruder.

Rick Morgan has written two posts which describe the history of the various A-6 "Iron Hand" derivatives:

http://rickmorganbooks.com/a-6b-standard-arm.html

http://rickmorganbooks.com/a-6e-anawg-21.html